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Substitutive arylation of cis-allylic diols occurs upon treatment

with arylboroxines in the presence of a rhodium(I) catalyst; the

reaction proceeds through the addition of an intermediate

arylrhodium(I) species across the carbon–carbon double bond

and subsequent b-oxygen elimination.

The rhodium-catalysed addition of organoborons to alkenes and

alkynes has emerged as a powerful method for the construction of

carbon–carbon bonds.1 Although alkenes are generally less

reactive than alkynes, activated examples, such as electron-

deficient2 and strained3 alkenes, act as good acceptors of

organorhodium(I) intermediates. In aqueous media, styrene

derivatives also react with organoborons.4 We have been trying

to expand the scope of rhodium-catalysed addition and have

found a new example of the alkene addition reaction. Herein, we

report the rhodium-catalysed substitutive arylation of cis-allylic

diols with arylboroxines.

A solution of cis-but-2-ene-1,4-diol (1a) and phenylboroxine (2a,

3.0 equiv. of B) in 1,4-dioxane (0.1 M) was stirred in the presence

of [Rh(OH)(cod)]2 (5 mol% Rh, cod = cycloocta-1,5-diene) at

room temperature for 12 h. After chromatography, 2-phenylbut-3-

en-1-ol (3aa) was isolated in 65% yield, together with a small

amount of 3-phenylbut-3-en-1-ol (4aa, ca. 3%; eqn. 1). Other

organoborons, like phenylboronic acid and its glycol ester, gave

lower yields.

ð1Þ

When 1a (0.16 mmol) was mixed with 2a (0.16 mmol, 3 equiv.

of B) in 1,4-dioxane-d8 (1 mL) in the absence of rhodium catalyst,

the spontaneous formation of cyclic arylboronic ester A5 via

transesterification was observed by 1H NMR.6 We assume the

stepwise pathways depicted in Scheme 1 for the reaction of 1a.7

Initially, cyclic arylboronic ester A is formed in situ from 1a and 2a.

Then, transmetalation of hydroxorhodium(I) with A generates a

phenylrhodium(I) species.8 The phenylrhodium(I) undergoes syn

1,2-addition across the carbon–carbon double bond of A,9 giving

the alkylrhodium(I) intermediate B. Subsequent b-oxygen elimina-

tion occurs to generate the major product 3aa. Another pathway is

also derived from B that leads to the minor product 4aa.

b-Hydride elimination and re-addition with the opposite regio-

chemistry gives the alkylrhodium(I) intermediate D. The following

b-oxygen elimination affords minor product 4aa. It is of note for B

that b-oxygen elimination predominates over b-hydride elimina-

tion.3e,10 This is in sharp contrast to the palladium-catalysed Heck-

type reaction of 1a with aryl halide, where organopalladium(II)

intermediate E undergoes b-hydride elimination rather than

b-oxygen elimination, leading to the formation of a 4-aryltetrahy-

drofuran-2-ol (Scheme 2).11,12

A control experiment was carried out using trans-but-2-ene-1,4-

diol, which is unlikely to be transformed into the corresponding

cyclic arylboronic ester. The reaction was sluggish at room

temperature, giving only a trace amount of 3aa after 12 h. In

Department of Synthetic Chemistry and Biological Chemistry, Kyoto
University, Katsura, Kyoto 615-8510, Japan.
E-mail: murakami@sbchem.kyoto-u.ac.jp; Fax: +81 75 383 2748;
Tel: +81 75 383 2747
{ Electronic supplementary information (ESI) available: Experimental
details and spectral data. See DOI: 10.1039/b612710j

Scheme 1 A plausible mechanism for the catalysed addition reaction.

Scheme 2 The palladium-catalysed Heck-type reaction of cis-allylic diol

1a with aryl halide.
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addition, no reaction occurred when cis-non-2-en-1-ol was used

as the substrate. These results indicate that formation of the

cyclic arylboronic ester A facilitates the 1,2-addition of a

phenylrhodium(I) species. The use of other substrates 5–7, which

were derived from cis-but-2-ene-1,4-diol, was also examined.

However, these substrates failed to participate in the substitutive

reaction.

A variety of arylboroxines and an alkenylboroxine 2 were

subjected to the substitutive arylation of cis-allylic diol 1a

(Table 1).13{ Both electron-donating and -withdrawing aromatic

substituents were suitably reactive (Table 1, entries 1–4). In the

case of sterically bulkier 1-naphthylboroxine (2f), the correspond-

ing product 3af was obtained in 81% yield (Table 1, entry 5).

However, alkenylboroxine 2g produced compound 3ag in only

22% yield (Table 1, entry 6).

We next examined the reaction with cyclic cis-allylic diol 1b.

When cis-cyclopent-4-ene-1,3-diol (1b) was treated with phenyl-

boroxine (2a, 5.0 equiv. of B) at 100 uC for 24 h, trans-2-phenyl-

cyclopent-3-en-1-ol (3ba, 46%) was obtained in a regio- and

stereoselective manner (eqn. 2). The reaction of 1b with

3-methoxyphenylboroxine (2d) gave the trans-isomer 3bd stereo-

selectively in 70% yield. The trans stereochemistry of the arylated

products can be explained by assuming that the syn 1,2-addition of

an arylrhodium(I) species across a carbon–carbon double bond

occurs from opposite sides of the hydroxyl groups and that

b-oxygen elimination proceeds in an anti fashion.10a

ð2Þ

Since 2-aryl-3-en-1-ols are versatile synthons that can be further

manipulated in a stereo- and chemoselective way, the asymmetric

version of the substitutive arylation was briefly examined (Table 2).

In the case of (S)-BINAP (8), which is highly effective for the

rhodium-catalysed asymmetric addition of arylboronic acids to

electron-deficient alkenes,2b both the yield and the enantioselec-

tivity were modest (55% yield, 41% ee; Table 2, entry 1). The use of

chiral diene ligand 9, developed by Carreira et al.,14 improved both

the chemical yield and the enantioselectivity (68% yield, 83% ee;

Table 2, entry 2). The highest enantioselectivity was observed when

1-naphthylboroxine (2f) was used (87% ee; Table 2, entry 4).

Analogous reaction conditions were applied to cyclic allylic diol 1b

to give 3bd (78% ee; Table 2, entry 5).15

In summary, we have developed a rhodium-catalysed addition

reaction of arylboroxines with cis-allylic diols, allowing the regio-

and stereoselective formation of 2-aryl-3-en-1-ols.16
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ethyl acetate = 5 : 3) to give the product 3aa (53.8 mg, 0.36 mmol) in 65%
yield.
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Table 2 Asymmetric arylative addition catalysed by a rhodium(I)
complexa

Entry 1 2 (R) Ligand 3 Yield (%)b ee (%)c

1 1a 2a (Ph) 8 3aa 55 41
2 1a 2a (Ph) 9 3aa 68 83
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ligand (5.5 mol%) and KOH (0.28 mmol) in dioxane (5 mL) at 40 uC
for 2 d. b Isolated yield. c Determined by a Chiralcel OD-H column.
d H2O (1.5 equiv.) was added. e 60 uC. f 100 uC.
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